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Integrated multiomics analysis of hepatoblastoma unravels
its heterogeneity and provides novel druggable targets
Masahiro Sekiguchi 1, Masafumi Seki 1, Tomoko Kawai 2, Kenichi Yoshida3, Misa Yoshida1, Tomoya Isobe 1, Noriko Hoshino4,
Ryota Shirai5, Mio Tanaka6, Ryota Souzaki7, Kentaro Watanabe 1, Yuki Arakawa8, Yasuhito Nannya3, Hiromichi Suzuki3, Yoichi Fujii9,
Keisuke Kataoka 10, Yuichi Shiraishi11, Kenichi Chiba11, Hiroko Tanaka 12, Teppei Shimamura13, Yusuke Sato9, Aiko Sato-Otsubo1,
Shunsuke Kimura 1,14, Yasuo Kubota 1, Mitsuteru Hiwatari1, Katsuyoshi Koh8, Yasuhide Hayashi15, Yutaka Kanamori16,
Mureo Kasahara17, Kenichi Kohashi18, Motohiro Kato5, Takako Yoshioka19, Kimikazu Matsumoto5, Akira Oka1, Tomoaki Taguchi7,
Masashi Sanada20, Yukichi Tanaka6, Satoru Miyano11, Kenichiro Hata2, Seishi Ogawa3,21,22 and Junko Takita 1,23✉

Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well
elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of
59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting
remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology
and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1
and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the
HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of
NQO1 and ODC1. Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression,
respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic
strategies for high-risk cases.
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INTRODUCTION
Hepatoblastoma is the most common pediatric liver cancer that
mainly affects young children1. This disease is clinically hetero-
geneous, and although the treatment outcome of hepatoblas-
toma has improved with the overall survival reaching ~80%2, the
prognosis of high-risk cases with unfavorable prognostic factors is
still poor despite high-intensity therapy3. Known poor prognostic
factors include larger tumor extension (the pretreatment extent of
tumor [PRETEXT] stage IV), presence of metastasis, extremely high
or low tumor marker level (serum alpha-fetoprotein level >
1,000,000 ng/mL or <100 ng/mL), and older age (>2 years)3. As
intensification of the chemotherapy applied to such high-risk
cases is reaching a limit, novel therapeutic approaches based on
the understanding of the biological mechanisms are required to
overcome high-risk hepatoblastoma.
The genetic hallmark of hepatoblastoma is aberrant activation

of Wnt signaling pathway4–6, and several studies that addressed
the genomic profile of hepatoblastoma revealed the high
prevalence of Wnt-activating mutations shared by most

hepatoblastoma cases7–10. However, genetic determinants of the
clinical heterogeneity of this cancer are still unclear. The
prognostic biomarkers suggested in the previous studies not only
have limitations in the reproducibility of their correlation with
treatment outcomes, but their biological implications are also not
clearly understood7,9,11. For example, Cairo et al. described the
molecular classification of hepatoblastoma into two subclasses, C1
and C2, using a 16-gene signature, with C2 being a group with
poor prognosis in the cohort7. However, Sumazin et al. revealed
that the classification was not prognostically predictive in another
cohort9.
In addition, hepatoblastoma shows one of the lowest mutation

burdens among all cancers12. Whole-exome sequencing of
hepatoblastoma revealed an average of less than five mutations
per tumor8,9,13. The very low frequency of mutations has hindered
the discovery of possible therapeutic targets for hepatoblastoma.
To elucidate these issues, we performed a multiomics analysis,

including mutatome, DNA methylome, and transcriptome ana-
lyses, of 59 hepatoblastoma samples to generate comprehensive
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genetic profiles, determine the genetic heterogeneity of this
disease, and identify specific therapeutic targets (Supplementary
Tables 1 and 2).

RESULTS
Profiles of gene mutations and copy number (CN) alterations
First, we performed mutation analysis by targeted capture
sequencing (Target-seq) and single-nucleotide polymorphism
(SNP) array-based CN analysis. We detected a total of 76 somatic
alterations by Target-seq (Supplementary Tables 3 and 4 and
Fig. 1). Among the driver mutations, CTNNB1 (encoding beta-
catenin) alterations were detected in 54 of the 59 samples (92%);
all alterations were associated with exon 3 (Supplementary Figs.
1a and 2) and were reported to induce beta-catenin stabilization
and hepatoblastoma tumorigenesis6,14. In addition, four samples
harbored germline truncating mutations in APC, another well-
known hepatoblastoma driver gene15,16, of which three were
accompanied with additional somatic APC alterations (Supple-
mentary Fig. 1b). In the remaining one sample where we could not
detect CTNNB1/APC alterations in Target-seq (HBL50C), a 15-base-
pair non-frameshift deletion within exon 3 of CTNNB1 (c.83_94del)
was identified in RNA sequencing (RNA-seq). In total, driver
mutations in CTNNB1/APC were identified in all the 59 samples. In
contrast, mutations in genes other than CTNNB1/APC were less

frequent: TERT promoter, DST, PEG10, and PTPRO were mutated in
only two samples each (3%) and the others were nonrecurrent
(Supplementary Table 5).
Among the CN alterations and allelic imbalances, whole-arm CN

gains were more frequent than losses (Supplementary Fig. 3). In
addition, 18 of the 59 samples (31%) harbored uniparental
disomy/trisomy on chromosome 11 (Supplementary Fig. 4).
These genetic profiles of hepatoblastoma were consistent with

previous reports7–9,17, and there was no significant difference in
the frequency of gene mutations and CN alterations between the
biopsy and postchemotherapy samples. Although the importance
of beta-catenin-stabilizing mutations was reconfirmed by the high
mutation rate of CTNNB1/APC, the presence of the other genetic
lesions was not sufficient to explain the clinical heterogeneity of
hepatoblastoma.

DNA methylation-based classification of hepatoblastoma
To further illustrate the molecular basis, we conducted a
microarray-based DNA methylome analysis and performed con-
sensus clustering of the methylation data. We failed to make a
robust and meaningful clustering of 59 hepatoblastoma samples
(Supplementary Fig. 5) due to a bias inherent in the global
methylation status of postchemotherapy samples with reference
to the biopsy samples. Therefore, we selected 39 biopsy samples

Fig. 1 Landscape of genetic alterations in hepatoblastoma. Recurrent gene mutations, copy number (CN) alterations, and allelic imbalances
are shown.
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for further clustering analysis. Consensus clustering classified
these 39 samples into two stable clusters, F and E, corresponding
primarily to cases with fetal and embryonal/combined histology,
respectively (Supplementary Fig. 6a–c). Furthermore, the second-
step consensus clustering divided cluster E into two subgroups, E1
and E2, which corresponded to younger and older cases,
respectively, with ~2 years of age as the border (Supplementary
Fig. 6d–f). These methylation clusters were correlated to the other
clinical features as well (Fig. 2). Of note, clusters E1/E2 were
characterized by higher alpha-fetoprotein levels at diagnosis,
frequent presence of metastasis, and worse outcomes compared
with cluster F. Liver transplantation was most frequent in cluster
E2, followed by clusters E1 and F. These differences suggested
distinct biological mechanisms underlying these three clusters.
Although the mutation profiles were not significantly different
among the clusters, the CN gains, especially of chromosomes 1q
and 2, were observed most frequently in cluster E2 (Supplemen-
tary Fig. 7).
To further characterize the methylation clusters, we performed

RNA-seq on hepatoblastoma samples together with normal liver
(NL) samples as controls. We compared the expression profiles
among the four clusters (the hepatoblastoma clusters F, E1, and E2
and NL; Fig. 3). The Wnt signaling and cell cycle pathways were
commonly upregulated in the three hepatoblastoma clusters
compared with the NL, whereas liver-associated pathways such as
retinol metabolism and the cytochrome P450 pathway were
commonly downregulated in the hepatoblastoma clusters (Sup-
plementary Tables 6–11). On the other hand, comparison among
the hepatoblastoma clusters indicated that clusters E1 and E2 had
few differentially regulated pathways (Supplementary Tables 12

and 13), whereas cluster F was distinct from clusters E1 and E2.
Specifically, the upregulation of the cell cycle pathway was more
pronounced in clusters E1 and E2, while liver-associated pathways
were relatively upregulated in cluster F (Supplementary Tables 14–
17). These results suggested similarities between clusters E1 and
E2 and a relative proximity of cluster F to the NL.
Considering the apparent contrast of cluster F with clusters E1/

E2, we focused on the comparison of clusters F versus E1/E2 and
analyzed the correlation between DNA methylation and expres-
sion. We performed region set enrichment analysis to test
differentially methylated CpGs between cluster F and clusters
E1/E2 for enrichment against sequence databases (Supplementary
Tables 18 and 19 and Supplementary Data S1 and S2). The regions
with the most significant overlap with the differentially hyper-
methylated CpGs in clusters E1/E2 were chromatin immunopre-
cipitation sequencing peaks in the NL cells determined by
antibodies to HNF4A and CEBPA, which are essential transcription
factors for hepatocyte differentiation18. In other words, a
considerable part of the HNF4A/CEBPA-binding regions was
differentially hypermethylated in clusters E1/E2. The overlapping
CpG probes were mostly in gene bodies rather than promoters,
and the differential methylation was strikingly similar to that
found between normal adult and fetal livers: the same regions
were clearly hypermethylated in the normal fetal liver compared
with the normal adult liver (Supplementary Fig. 8). Furthermore,
the expression profiles of clusters E1/E2 shared more similarities
with fetal liver compared with cluster F whose expression pattern
resembled that of the adult liver (Supplementary Fig. 9). These
methylation and expression patterns are compatible because the
high methylation level of the HNF4A/CEBPA-binding regions in

Fig. 2 Three hepatoblastoma methylation clusters, F, E1, and E2, display distinct clinical features. a DNA methylation heatmap across 39
biopsy samples and clinical information on each case. The heatmap is constructed for the 3000 probes used in the first-step consensus
clustering of the 39 samples (Supplementary Data S5). Comparison of age (b) and serum alpha-fetoprotein levels (c) at diagnosis among the
methylation clusters using the Wilcoxon rank-sum test. For the box plots, the middle line is the median, the top and bottom of the box
indicate the interquartile range, and the error bars are minimum and maximum values excluding outliers. Kaplan–Meier survival curves of
three methylation clusters for event-free (d) and overall (e) survival. AFP alpha-fetoprotein, PRETEXT pretreatment extent of disease.
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clusters E1/E2 can prevent the binding of transcription factors,
block differentiation, and render the expression pattern resemble
that of the immature liver. Accordingly, these results suggest that
the differential methylation of HNF4A/CEBPA-binding regions can
be responsible for the diversity in tumor differentiation in
hepatoblastoma.

Novel therapeutic targets of high-risk hepatoblastoma
To further assess the effect of differential methylation on
expression, we integrated the gene-level differential methylation
and expression analyses between clusters F versus E1/E2 (Fig. 4a).
The most differentially overexpressed gene with promoter
hypomethylation in clusters E1/E2 was NQO1. The differential

Fig. 3 Gene expression analysis of hepatoblastoma and normal liver (NL) reveals similarity between the hepatoblastoma clusters E1 and
E2 as well as a relative proximity of cluster F to the NL. a Heatmap of the expression data of 2000 differentially expressed genes among four
clusters (NL and three hepatoblastoma clusters F, E1, and E2; Supplementary Data S8) across 35 hepatoblastoma biopsy samples and ten NL
samples. The expression level is log-transformed and z-normalized to zero mean and unit standard deviation for each gene. b Principal
component analysis plot for the expression data. Summarized results of the pathway analysis of differential expression among the
hepatoblastoma and NL clusters are added on the plot; a black arrow directed from cluster X to Y and pathway A described nearby with an
upward/downward arrow indicates significant upregulation/downregulation of pathway A in cluster Y compared with cluster X.
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methylation status of the NQO1 promoter between cluster F and
clusters E1/E2 was very similar to that observed between normal
adult and fetal livers (Supplementary Fig. 10a), which suggested
that tumor differentiation highly affected NQO1 promoter
methylation in hepatoblastoma. Among the CpG probes asso-
ciated with NQO1, cg26598152, the nearest probe to the NQO1-
antioxidant response element (ARE), a cis-acting enhancer of
NQO119, was the probe whose methylation was the most
negatively correlated with NQO1 expression (Fig. 4b and
Supplementary Fig. 10b–e). It suggests the possibility that NQO1
expression in hepatoblastoma is highly regulated by the NQO1-
ARE.
NQO1 is a well-known antioxidant/detoxifying enzyme and

functions in reduction/detoxification of quinones20. High expres-
sion of NQO1 is known to be a poor prognostic factor in several
types of cancers, including hepatoblastoma8,21, and NQO1
inhibition has been reported to sensitize multiple types of cancers
to anticancer drugs22,23. Given that quinone-containing anthracy-
clines play an important role in hepatoblastoma treatment, we
hypothesized that high NQO1 expression in hepatoblastoma
clusters E1/E2 contributed to chemoresistance and poor outcome.
To assess the synergistic effect of NQO1 inhibition and doxor-
ubicin on NQO1-high hepatoblastoma cell lines, we performed a

drug sensitivity assay, which revealed that both NQO1 siRNA and
dicoumarol, an NQO1 inhibitor, significantly lowered the EC50
values of doxorubicin (Fig. 4c, d and Supplementary Fig. 11a, b).
The combination of NQO1 inhibition and doxorubicin significantly
reduced cell viability compared with doxorubicin alone (Fig. 4e, f
and Supplementary Fig. 11c, d), indicating that increased NQO1
expression was a key event in anthracycline resistance.
To further explore new therapeutic targets, we focused on a

slight but significant growth arrest of hepatoblastoma cell lines
after NQO1 inhibition alone, which was observed in the above-
mentioned experiments (Fig. 4f and Supplementary Fig. 11c, d). A
function of NQO1 other than antioxidant activity is stabilizing
ODC1, a key enzyme for polyamine formation and cell prolifera-
tion (Fig. 5a)24. In fact, not only was the ODC1 protein level
decreased in NQO1-low hepatoblastoma samples compared with
NQO1-high samples, despite the comparable high ODC1 mRNA
expression (Supplementary Fig. 12a–c), but we also observed a
reduction in ODC1 protein levels in HepG2 cells after NQO1
inhibition (Supplementary Fig. 12d, e); these results indicate that
NQO1 plays an important role in the stabilization of the ODC1
protein in hepatoblastoma cells. Thus, we considered that NQO1
inhibition-associated growth arrest was due to ODC1 instability.
Moreover, ODC1 was among the most differentially upregulated

Fig. 4 High expression of NQO1 based on promoter hypomethylation is a characteristic of high-risk hepatoblastoma and a potential
therapeutic target for chemoresistance. a Starburst plot showing the correlation of differences in promoter methylation and expression
between the hepatoblastoma clusters F versus E1/E2. The only gene with absolute methylation difference ≥ 0.25 and absolute log2-fold
expression change ≥ 2.5 is NQO1, indicated in red. b Correlation between the methylation of probe cg26598152 and NQO1 expression. Rs
represents Spearman’s correlation coefficient. c, d Dose–response curves of HepG2 cells exposed to various concentrations of doxorubicin
(DOX) after NQO1 inhibition (red) or negative control treatment (black). NQO1 was inhibited by using siRNA (c) or dicoumarol (d). Horizontal
bars and whiskers at the bottom indicate EC50 values with 95% confidence intervals. e, f Enhancement of DOX cytotoxicity by NQO1 inhibition
in HepG2 cells. NQO1 was inhibited using siRNA (e) or dicoumarol (f). The luminescence intensities representing the cell viability are compared
between the conditions with and without NQO1 inhibition using the unpaired Student’s t test.
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Fig. 5 ODC1 is differentially overexpressed in high-risk hepatoblastoma and a key molecule for rapid cell proliferation in
hepatoblastoma. a Schematic presentation of ODC1 stabilization by NQO1. b Volcano plot displaying genes that are differentially expressed
between the hepatoblastoma clusters F versus E1/E2. Each gene is plotted with log2-fold expression change on x-axis and negative log10 false
discovery rate (FDR) q value on y-axis. Genes with absolute log2-fold change > 2 and an FDR q value of <1.0 × 10−7 are shown in orange. NQO1
and ODC1 are shown in red. c Kaplan–Meier survival curves for overall survival according to ODC1 expression. d ODC1 FPKM in
hepatoblastoma samples and cell lines. e, f Cell proliferation assay to assess the effect of ODC1 inhibition on HepG2 cells. ODC1 was inhibited
using siRNA (e) or difluoromethylornithine (DFMO; f). Error bars indicate SD of triplicate experiments. Cell viabilities on day 4 are compared
between the conditions using the unpaired Student’s t test. g–i Ethynyl deoxyuridine (EdU) assay using HepG2 cells treated with PBS,
dicoumarol, DFMO, and negative control/NQO1/ODC1 siRNA. The ratio of EdU-positive cells per total Hoechst-positive cells are compared
among the conditions using the unpaired Student’s t test. Scale bar represents 100 μm.
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genes in high-risk hepatoblastoma cases (Fig. 5b–d). Altogether,
we hypothesized that ODC1 was a key molecule for aggressive cell
proliferation and a candidate therapeutic target in high-risk
hepatoblastoma. Our cell proliferation assay to investigate
whether ODC1 inhibition suppressed cell growth in ODC1-high
hepatoblastoma cell lines revealed that both ODC1 siRNA and
difluoromethylornithine (DFMO), an ODC1 inhibitor, significantly
inhibited cell proliferation (Fig. 5e, f and Supplementary Fig. 13).
We also performed apoptosis and cell cycle assays to determine
the cause of the decrease in cell viability observed after ODC1
inhibition. We found that this inhibition in cell proliferation was
associated with cell cycle arrest, rather than apoptosis (Fig. 5g–i
and Supplementary Fig. 14).

Genetic differences between clusters E1 and E2
Finally, we examined the differences in the DNA methylation and
expression profiles between the genetically similar clusters E1 and
E2. The most significant differential methylation between the two
clusters was observed in the gene body of STAP2 and the
promoter-associated region of C1orf51/CIART (Supplementary Fig.
15a, b and Supplementary Data S3). However, these methylation
differences did not alter the expression of STAP2 or CIART
(Supplementary Fig. 15c, d). Hence, the biological significance of
the differential methylation was unclear.
Differential expression analysis revealed significantly higher

expression of HBG1, HBG2, TMCC2, CLMP, ALAS2, and HBM in
cluster E1 (Supplementary Fig. 16a). Differential expression of
these genes except CLMP was due to the outliers in cluster E1
(HBL05P, HBL06P, and HBL09P), which showed extremely high
expression of these genes (Supplementary Fig. 16b–g). Among
these genes, HBG1 and HBG2 encode hemoglobin gamma chains,
whereas ALAS2 encodes the erythroid-specific delta-aminolevuli-
nate synthase, all of which are associated with hematopoiesis in
the fetal liver25,26. In addition, HBL05P, HBL06P, and HBL09P were
some of the youngest cases in the study cohort who were
diagnosed with hepatoblastoma within the first 5 months of life.
Taken together, high expression of abovementioned genes was
presumed to reflect the immaturity of the tumor in some cases in
cluster E1. In fact, in the expression analysis shown in the section
above (Supplementary Fig. 9g), HBL05P, HBL06P, and HBL09P
exhibited the highest mean expression of the 250 genes that were
differentially highly expressed in immature fetal liver at 10.5 weeks
of gestation (Supplementary Fig. 16h). On the contrary, differential
expression analysis also revealed significantly higher expression of
CCL25, DUSP2, KLRK1, and NQO1 in cluster E2 (Supplementary Fig.
16a). Among these genes, high expression of NQO1 may
contribute to stronger chemoresistance and higher need for liver
transplantation in cluster E2 (Fig. 2a and Supplementary Fig. 16i).
Meanwhile, differential high expression of the other genes in
cluster E2 was due to one outlier sample (Supplementary Fig.
15j–l), therefore, the biological significance was unclear.

DISCUSSION
In this study, we present a genome-wide molecular portrait of
hepatoblastoma characterized by uniformly upregulated Wnt
signaling pathway and novel DNA methylation clusters which
tightly correlate with genetic abnormalities, histological subtypes,
and clinical behaviors. The landscape of gene mutations and CN
alterations revealed by the Target-seq and SNP array analyses
revealed a high prevalence of Wnt-activating mutations, whole-
arm CN gains, and 11p uniparental disomy/trisomy, which is
consistent with previous reports7–9,17. Additional recurrent gene
mutations were observed in DST, PEG10, PTPRO, and the TERT
promoter. Although some of these genes have been reported to
be related to the Wnt signaling pathway27–29, we did not find a
significant difference in Wnt activation levels between samples

with and without those gene mutations (Supplementary Fig. 17).
Thus, it remains unclear whether these mutations have synergistic
effects on aberrant Wnt activation in hepatoblastoma.
To elucidate the heterogeneity of hepatoblastoma, which was

not fully explained by the genomic landscape described above,
we analyzed DNA methylome and transcriptome data and
successfully unraveled the genetic heterogeneity of this disease
by identifying the novel methylation clusters F, E1, and E2. The
current results propose a model of hepatoblastoma tumorigenesis
and heterogeneity (Fig. 6). In this model, poor prognostic clusters
E1/E2 originate from liver progenitor cells at a more immature
stage, which consequently harbor hypermethylation of the
HNF4A/CEBPA-binding regions and gene expression profiles that
resemble those of fetal liver as a result. Through upregulation of
the cell cycle pathway and overexpression of NQO1 and ODC1,
they exhibit an aggressive and chemoresistant tumor phenotype
as well as a poorly differentiated histology. Conversely, Cluster F
arises from hepatoblasts at a relatively mature stage, harboring
genetic and clinical features that are opposite to those of clusters
E1/E2.
Several past studies have reported that tumor differentiation

and pathology have a great impact not only on the biology of
hepatoblastoma, but also on its clinical features7,10,11,30. In this
study, we explained a large proportion of the genetic hetero-
geneity of hepatoblastoma by comparing the methylation clusters
F and E1/E2. However, this comparison largely reflects the contrast
between fetal and non-fetal histologies, and fairly overlaps with
the C1/C2 classification previously described by Cairo et al.
(Supplementary Fig. 18a, b). In this sense, we cannot claim that the
methylation clusters have a large additive value regarding
prognostic prediction. Rather, one of the advantages of the
current work is that the cell origin of hepatoblastoma is placed on
a firmer basis by analyzing comprehensive methylome data.
In addition, the separation of cluster E into two subgroups E1

and E2 by age of diagnosis is presumably meaningful, given the
importance of age as a prognostic factor in hepatoblastoma3. This
classification may provide a clue about the molecular mechanism
of aggressive hepatoblastoma that develops in older patients. In
this study, however, we are yet to point out the clear genetic
difference between clusters E1 and E2, except that more frequent
CN gains of chromosomes 1q and 2 and higher expression of
NQO1 are observed in cluster E2, whereas some cases in cluster E1
exhibited very immature expression profiles. Although the
methylation cluster E fairly overlaps with the C2 group described
by Cairo et al.7, the subclassification of cluster E into E1 and E2 was
very different from that of C2, which was proposed by Hooks et al.
and uses a four-gene signature to provide two subgroups, C2A
and C2B11 (Supplementary Fig. 18c). Thus, the genetic differences
between the cases in high and low age groups are still unclear and
should be further explored in future studies.
Another valuable finding of the current study is the identifica-

tion of novel therapeutic targets, NQO1 and ODC1, in high-risk
hepatoblastoma. Although high expression of NQO1 has been
reported as a poor prognostic factor in hepatoblastoma in a
previous study8, the mechanism of high NQO1 expression has not
been clarified except for activating mutation of NEF2L2, a
transcription factor upstream of NQO1. The current study pointed
out the possibility that methylation of NQO1-ARE highly regulated
NQO1 expression. In addition, we confirmed the druggability of
NQO1 and ODC1 by in vitro experiments using multiple inhibition
methods and multiple cell lines. Of note, DFMO (ODC1 inhibitor)
was effective in as low concentration as 0.1–0.5 mM, which was
lower than used in previous experiments performed on neuro-
blastoma cell lines31. Given that DFMO has been clinically adopted
as a therapeutic choice in refractory neuroblastoma32, DFMO can
also be an option in the treatment of ODC1-high human
hepatoblastoma. Of course, forced expression assays or in vivo
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experiments are necessary to further evaluate the roles of NQO1
and ODC1 in cell proliferation and chemoresistance.
In summary, the current results propose a DNA methylation-

based classification that explains the genetic and clinical diversity
of hepatoblastoma and shed light on the high expression of
NQO1 and ODC1, potential druggable targets, in high-risk
hepatoblastoma.

METHODS
Patients and samples
A total of 59 fresh-frozen tumor samples, 7 NL samples, and 15 normal
blood samples were collected from 60 hepatoblastoma patients, after
written informed consent was obtained according to protocols approved
by the Human Genome, Gene Analysis Research Ethics Committee of the
University of Tokyo and other participating institutions. The 59 tumor
samples comprised 39 samples collected at primary diagnostic biopsy
(HBL01P–HBL39P) and 20 samples collected at postchemotherapy resec-
tion (HBL40C–HBL59C). All hepatoblastoma samples were pathologically
reviewed by three expert pathologists to confirm the diagnosis and
presence of tumor. Genomic DNA and total RNA were isolated from all the
collected samples and the hepatoblastoma cell lines HepG2 and HuH6 for
massive parallel sequencing and microarray analysis. In addition, adult
human liver genomic DNA and total RNA obtained from the commercial
sources BioChain and ZYAGEN were also analyzed. The list of the samples
that underwent comprehensive genetic analysis is provided in Supple-
mentary Table 1. Information on the clinical characteristics of the 59
hepatoblastoma cases was collected from the medical records and is
shown in Supplementary Table 2. Regarding treatment, therapeutic
strategies were not completely uniform but were comparable among all
cases: the patients were stratified based on the clinical information
including pathology, PRETEXT, metastasis, and serum alpha-fetoprotein
levels and were treated with surgical resection and/or adjuvant

chemotherapy. The chemotherapy regimens were based on the JPLT33,34

or SIOPEL2,35–37 protocols that employed cisplatin and anthracyclines.

Statistics
Statistical analyses were performed using the R software version 3.5.1
(https://www.R-project.org/).

Targeted capture sequencing
DNA isolated from 59 hepatoblastoma tumor samples and two hepato-
blastoma cell lines were analyzed by Target-seq. Sequencing libraries were
constructed using a SureSelect XT custom kit (Agilent Technologies)
according to the manufacturer’s protocol. Massive parallel sequencing of
the library was performed using the HiSeq 2000/2500 platform (Illumina)
with a 126-bp paired-end read protocol according to the manufacturer’s
instructions. The custom gene panel was designed for mutation profiling
of pediatric cancers, including (i) all coding exons of 366 cancer-associated
genes (Supplementary Table 20), (ii) untranslated regions and introns of 16
genes (CD274, CTNNB1, ERG, ETV1, ETV4, EWSR1, FEV, FLI1, FOXO1, FUS,
INO80D, NCOA1, NCOA2, NOTCH1, PAX3, and PAX7) for detecting break-
points of structural variations, (iii) 110,000 bases surrounding TERT for
detecting TERT rearrangement and promoter/enhancer mutation, (iv)
promoter and enhancer regions of FGFR3 and MYC, and (v) 11 microRNA
genes (MIR100, MIRLET7A1, MIRLET7A2, MIRLET7A3, MIRLET7B, MIRLET7C,
MIRLET7D, MIRLET7E, MIRLET7F1, MIRLET7F2, MIRLET7G). Sequence align-
ment and detection of gene mutations and structural variations were
performed using our in-house pipeline, Genomon v.2.5.3 (https://github.
com/Genomon-Project/).

Mutation and structural variation analysis
Gene mutations called by the Genomon pipeline were first filtered to
exclude sequencing/mapping errors and mutations of unknown signifi-
cance, using the following parameters: (i) mapping quality score ≥ 20,

Fig. 6 The molecular model of hepatoblastoma tumorigenesis and genetic/clinical heterogeneity. All hepatoblastoma cells are commonly
derived from immature hepatocytes with aberrant activation of the Wnt signaling pathway, whereas heterogeneity among cases arises from
the diversity of the differentiation stage of the origins. Clusters E1/E2 are derived from liver progenitor cells at an earlier differentiation stage
and consequently harbor hypermethylation of HNF4A/CEBPA-binding regions that leads to expression profiles mimicking fetal liver, which
explain the poorly differentiated pathology and aggressive cell proliferation. In addition, clusters E1/E2 highly express NQO1 due to promoter
hypomethylation, which induces chemoresistance. Cluster F arises from hepatoblasts at a relatively mature stage, harbors genetic features that
are opposite of those observed in clusters E1/E2, and represents good prognosis.
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(ii) base quality score ≥ 15, (iii) nonsilent exonic/splice-site mutations, (iv)
strand ratio not equal to 0/1, (v) read depth ≥ 100, (vi) number of both
reference and variant read pairs ≥ 5, (vii) variant allele frequency (VAF) ≥
0.05, and (viii) EBCall38 P value < 10−20. Next, candidate mutations were
further filtered to exclude mutations likely to be germline SNPs using the
following procedures: (i) removal of variants listed in SNP databases, (ii)
exclusion of mutations with a VAF ≥ 0.35 in copy-neutral regions without
loss of heterozygosity, (iii) exclusion of mutations with a VAF ≥ 0.25 in CN-
gained regions without loss of heterozygosity, and (iv) reinclusion of
mutations with ten or more mentions of solid tumors in the Catalogue of
Somatic Mutations In Cancer Database version 68 on WGS data and version
70. In addition, mapping errors were removed by visual inspection on the
Integrative Genomics Viewer browser. Validity of the filtering process in
distinguishing somatic and germline mutations was confirmed by Sanger
sequencing in 17 cases where matched germline and tumor DNA samples
were both available (HBL01, HBL02, HBL03, HBL04, HBL08, HBL12, HBL16,
HBL24, HBL25, HBL30, HBL31, HBL33, HBL35, HBL37. HBL41, HBL43, and
HBL45) and determining if each mutation was germline or somatic. In total,
19 of the 21 mutations filtered as “somatic” were truly somatic, and all 173
mutations filtered as “germline” were truly germline. On the ground of the
high positive and negative predictive values (91% and 100%, respectively),
we applied the filtering method to the other cases and fixed the list of
somatic exonic/splice-site mutations. In addition, germline truncating
mutations of APC were picked up from the list of germline mutations,
considering its importance in hepatoblastoma tumorigenesis15,16. Finally, a
distinctive filtering method was adopted for detecting TERT promoter
mutations because the filtering procedure shown above missed all TERT
promoter mutations due to low read depth of ~10 around the promoter
region. The filtering conditions were as follows: chromosomal position
within chr5:1295105–1295353 and an EBCall P value < 10−4. In addition
detected TERT promoter mutations were combined with the mutation list
above to create the final list of gene mutations (Supplementary Table 3).
Structural variations called by the Genomon pipeline were filtered with

the following parameters: (i) number of reference read pairs ≥ 300, (ii)
number of valiant read pairs ≥ 20, and (iii) maximum overhang ≥ 150 bps
for both sides of the breakpoint. Finally, the following structural variations
were removed to create the final list: (i) structural variations whose
breakpoints were mapped on mitochondrial/linear DNA and (ii) deletions
and tandem duplications within an intron appearing not to affect coding
exons (Supplementary Table 4).

SNP array analysis
A total of 59 hepatoblastoma samples and two hepatoblastoma cell lines
were analyzed by SNP array using the Human Mapping 250K Nsp Array for
Cytogenetics (Affymetrix) according to the manufacturer’s protocol. The
array data were analyzed for CN alterations and allelic imbalances using
the CNAG software version 3.5.139,40.

DNA methylation array analysis
Genomic DNA extracted from 59 hepatoblastoma samples, nine NL
samples, and two hepatoblastoma cell lines were treated with bisulfite and
analyzed by DNA methylation array using Infinium MethylationEPIC
BeadChip (Illumina) according to the manufacturer’s protocol. Quality
control, signal correction, calculation of methylation beta value, data
normalization, and differential methylation analysis were performed using
Bioconductor package ChAMP version 2.10.141. The differentially methy-
lated CpG probes were ranked by adjusted P values that were calculated
by fitting linear models, and top-ranked probes are shown in tables
(Supplementary Data S1–S3).

Consensus clustering of methylation data
To unravel the heterogeneity of hepatoblastoma, consensus clustering of
methylation data was performed using Bioconductor package Consensu-
sClusterPlus version 1.44.042. First, consensus clustering of 59 hepatoblas-
toma samples was performed (Supplementary Fig. 4). To select the most
variably methylated CpG probes among the samples, standard deviations
(SD) of the methylation beta values of the promoter-associated CpG
probes (annotated as “Promoter_Associated” or “Promoter_Associated_-
Cell_type_specific” in the manifest file supplied by the manufacturer and
designed in “Island,” “N_Shore,” or “S_Shore” regions on autosomes) were
calculated. Top 100, 1000, 2000, 3000, and 10,000 probes ranked by SD
were selected (Supplementary Data S4), and consensus clustering of the
59 samples within the space of the selected probes with Euclidean or

Pearson correlation metrics was performed with 1000 iterations (Supple-
mentary Fig. 5a–j). From the cumulative distribution function plots, the
most robust clustering was obtained using the top 2000 probes and
Pearson correlation metrics (Supplementary Fig. 5h, k). According to the
clustering, a methylation heatmap was constructed for the 2000 probes
across the 59 samples, with addition of the clinical information
(Supplementary Fig. 5l).
Next, consensus clustering of 39 hepatoblastoma biopsy samples was

performed. The most variably methylated CpG probes were selected using
the approach for the analysis of the 59 samples described above. For the
first-step consensus clustering of 39 biopsy samples, top 3000 probes
ranked by SD were selected (Supplementary Data S5). Consensus
clustering of the 39 samples within the space of the 3000 probes with
Euclidean metrics and 1000 iterations generated two robust clusters
termed F and E (Supplementary Fig. 6a–c). For the second-step consensus
clustering of 30 cluster E samples, top 1000 CpG probes ranked by SD were
selected (Supplementary Data S6). Consensus clustering of the 30 samples
within the space of the 1000 probes with Pearson correlation metrics and
1000 iterations generated two robust clusters termed E1 and E2
(Supplementary Fig. 6d–f).

Enrichment analysis of differentially methylated regions
Region set enrichment analysis of differentially methylated CpGs between
hepatoblastoma clusters were performed using Bioconductor package
LOLA version 1.6.043. The top 2000 differentially methylated CpG probes
between cluster F and clusters E1/E2 (Supplementary Data S1 and S2) were
tested for enrichment against the LOLA core sequence database
(Supplementary Data S7). The top 50 regions ranked by the false discovery
rate q value are listed in tables (Supplementary Tables 18 and 19).

RNA sequencing
Among 59 hepatoblastoma samples, RNA with adequate quality for RNA-
seq based on an RNA integrity number equivalent score of ≥5.0
determined by a 4200 TapeStation system (Agilent Technologies) was
available for 50 samples. In addition to the 50 hepatoblastoma samples (35
biopsy samples and 15 postchemotherapy samples), ten NL samples and
two HBL cell lines were assessed by RNA-seq (Supplementary Table 1).
Sequencing libraries were constructed using a NEBNext Ultra RNA Library
Prep Kit for Illumina (New England Biolabs) according to the manufac-
turer’s protocol. Massive parallel sequencing of the library was performed
using the HiSeq 2000/2500 platform with a 100-bp/126-bp paired-end read
protocol according to the manufacturer’s instructions. Sequence alignment
and read counting were performed using the Genomon pipeline.

Gene expression analysis
Normalization of the read counts of RNA-seq data and differential
expression analysis were performed using Bioconductor package DESeq2
version 1.20.044. Differentially expressed genes among four clusters (NL
and the three hepatoblastoma clusters F, E1, and E2) were ranked by
adjusted P values that were determined by the likelihood ratio test for
significance of the change in deviance between a full and reduced model.
Top 2000 differentially expressed genes are shown in Supplementary Data
S8. Pathway analysis of differential expression among the four clusters was
performed by using generally applicable gene set enrichment (GAGE)
method implemented in Bioconductor package gage version 2.30.045.
Differentially regulated KEGG pathways46 with a false discovery rate q
value of <0.001 are listed in tables (Supplementary Tables 6–17). Principal
component analysis was performed for the most variably expressed 10,000
genes ranked by median absolute deviation of the log-transformed
expression values among the 35 hepatoblastoma and ten NL samples
(Fig. 3b).

DNA methylation analysis of normal adult and fetal livers
DNA methylation data of the normal adult and fetal livers generated on
Infinium HumanMethylation450K BeadChip (Illumina) were obtained from
the Gene Expression Omnibus (GEO) under the accession number
GSE6127847 and processed using ChAMP.

Expression analysis of normal adult and fetal livers
RNA-seq data of the normal adult and fetal livers were downloaded from
the GEO under the accession number GSE9698148 and processed using the
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Genomon pipeline and DESeq2. Differential expression analysis among the
three groups (adult liver, fetal liver at 17.5 weeks of gestation, and fetal
liver at 10.5 weeks of gestation) was performed by the likelihood ratio test
implemented in DESeq2 (Supplementary Data S9).

Integration of DNA methylation and expression analyses
DNA methylation of the promoter and expression of each gene were
compared between hepatoblastoma clusters F and clusters E1/E2. First, the
difference in promoter methylation for each gene was calculated as
follows. (i) CpG probes that were associated with the gene and annotated
as “Promoter_Associated” or “Promoter_Associated_Cell_type_specific” in
the manifest file were selected. (ii) Mean methylation beta values of all the
selected probes were calculated for clusters F and E1/E2. (iii) The difference
between the two values was adopted. Then, log2-fold change in the
expression of each gene was calculated using DESeq2. Each gene was
plotted with promoter methylation difference on x-axis and expression
change on y-axis (Fig. 4a).

Correction of NQO1 expression by the polymorphism C609T
Based on previous studies reporting that the NQO1 C609T polymorphism
(rs1800566) highly affected its enzymatic activity and that the T/T
genotype harbored only 2–4% NQO1 activity compared with the wild-
type C/C genotype49,50, corrected NQO1 expression value (FPKM,
fragments per kilobase of transcript per million mapped reads) in each
sample was calculated as follows:

CorrectedNQO1 FPKM ¼ rawNQO1 FPKM ´
Ncþ 0:03 ´Nt

Ncþ Nt
; (1)

where Nc and Nt represented read counts with C and T alleles at SNP
rs1800566 in the RNA-seq data, respectively.

Survival analysis
Overall survival was measured from the date of diagnosis to the date of
death from any cause or last follow-up, whereas event-free survival was
measured from the date of diagnosis until the date of the first event
(relapse, failure to achieve remission, second malignancy, or death from
any cause) or last follow-up. Failure to achieve remission was evaluated as
an event on day 0. The Kaplan–Meier method was used to generate
survival curves for each subgroup, and the log-rank test was used to test
differences between the curves.

Cell lines
The hepatoblastoma cell lines HepG2 (RCB1886) and HuH6 (RCB1367) were
obtained from RIKEN BRC Cell Bank (Tsukuba, Japan). Both cell lines were
cultured in high-glucose Dulbecco’s Modified Eagle Medium (Sigma
Aldrich) supplemented with 10% fetal bovine serum (Gibco, Invitrogen)
at 37 °C in a humidified incubator with 5% CO2.

Chemosensitivity assay after NQO1 knockdown by siRNA
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, NQO1 siRNA (s4089/s4091) or negative
control siRNA (#4390843), both from Applied Biosystems, was transfected
using the Lipofectamine RNAiMAX reagent (Life Technologies) with minor
modifications from the manufacturer’s protocol: the amount of siRNA and
Lipofectamine reagent added in each well was reduced by 30% from the
recommended values to avoid cytotoxicity. The efficacy of the modified
method was comparable with that of the original method, which was
confirmed by RT-PCR. After siRNA transfection, the cells were incubated for
24 h, and doxorubicin (Cayman Chemical) was added in various
concentrations (0–5000 ng/mL). After an additional 48 h of incubation,
cell viability was measured by an ATP assay using the CellTiter-Glo reagent
(Promega) following the manufacturer’s instructions. The experiment was
performed in triplicate and repeated three times with equivalent results.

Chemosensitivity assay after NQO1 inhibition by dicoumarol
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, the NQO1 inhibitor dicoumarol (Tokyo
Kasei Kogyo) or its solvent as a negative control was added. The
concentration of dicoumarol was 30 μM. After 24 h of incubation,
doxorubicin was added in various concentrations (0–5000 ng/mL). After

an additional 48 h of incubation, cell viability was measured by an ATP
assay using the CellTiter-Glo reagent. The experiment was performed in
triplicate and repeated three times with equivalent results.

NQO1 and ODC1 immunohistochemistry assay
NQO1 and ODC1 immunostaining was performed on formalin-fixed
paraffin-embedded tumor tissue sections using antibodies directed against
NQO1 (11451-1-AP; Proteintech) and ODC1 (17003-1-AP; Proteintech) at
the concentrations of 1/150 and 1/200, respectively.

Western blot analysis
HepG2 cells were plated on 6-cm dishes at a density of ~500,000 cells/dish.
The cells were transfected with NQO1 or negative control siRNA at 24 h
after plating. After an additional 36 h of incubation, the cells were collected
and lysed. Another set of cells plated in parallel were treated with
dicoumarol or its solvent as a negative control at 48 h after plating and
lysed after an additional 12 h of incubation. Whole-cell lysates were
analyzed by western blotting using antibodies against alpha-tubulin
(ab7291; Abcam), NQO1 (NB200-209; Novus Biologicals), and ODC1
(GTX101521; GeneTex) at the concentrations of 1/10,000, 1/1666, and 1/
1000, respectively. Normalized ODC1 band intensity was calculated by
dividing the ODC1 band volume in each condition by the corresponding
band volume of alpha-tubulin. The experiment was performed in triplicate
and repeated twice with equivalent results.

Cell proliferation assay after ODC1 knockdown by siRNA
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, ODC1 siRNA (s9821) or negative
control siRNA (#4390843) from Applied Biosystems was transfected using
the Lipofectamine RNAiMAX reagent with minor modifications from the
manufacturer’s protocol, wherein the amount of siRNA and Lipofectamine
reagent added in each well was reduced by 30% from the recommended
volume to avoid cytotoxicity. The efficacy of the modified method was
comparable with that of the original method, which was confirmed by RT-
PCR. Cell viability was measured by the ATP assay using the CellTiter-Glo
reagent at 0, 24, 48, 72, and 96 h of incubation after the transfection. The
experiment was performed in triplicate and repeated three times with
equivalent results.

Cell proliferation assay after ODC1 inhibition by DFMO
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, the ODC1 inhibitor DFMO (Tokyo Kasei
Kogyo) or its solvent as a negative control was added. The DMFO
concentrations were 0.1, 0.5, and 1.0 mM. Cell viability was measured by
the ATP assay using CellTiter-Glo reagent at 0, 24, 48, 72, and 96 h of
incubation after the DFMO treatment. The experiment was performed in
triplicate and repeated three times with equivalent results.

Apoptosis assay
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, the cells were treated with PBS as a
negative control, 1000 ng/mL of doxorubicin as a positive control, 30 μM
dicoumarol, and 1.0 mM DFMO. Apoptosis signals were measured at
0–48 h after the treatment using the RealTime-Glo Annexin V Apoptosis
Assay Reagent (Promega), according to the manufacturer’s instructions.
The experiment was performed in hexaplicate and repeated twice with
equivalent results.

Cell cycle assay
Approximately 5000 HepG2 or HuH6 cells were plated in each well of 96-
well plates. After 24 h of incubation, the cells were treated with PBS, 30 μM
dicoumarol, 5.0 mM DFMO, and a negative control/NQO1/ODC1 siRNA.
After 96 h of treatment, the cells were exposed to 10 μM ethynyl
deoxyuridine (EdU) for 2 h and stained with 488-azide (for the detection
of EdU) and Hoechst-33342 using a Click-iT EdU Alexa Fluor 488 imaging
kit (Thermo Fisher Scientific), according to the manufacturer’s instructions.
EdU-positive and total cell counts were obtained using the ImageJ
software version 1.52a (https://imagej.nih.gov/ij/). The experiment was
performed in quadruplicate and repeated twice with equivalent results.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Target-seq, RNA-seq, SNP array, and DNA methylation array data obtained in the
current study were deposited in the Japanese Genotype-phenotype Archive51 under
the accession number JGAS00000000188.
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